《深度学习快速实践--――基于TensorFlow和Keras的深度神经网络优化与训练》内容包括神经网络的基础、深度神经网络的优化和验证、深度神经网络开发和训练环境的构建、使用Tensor-Board 进行网络训练的监控和模的超参数优化。本书详细介绍的深度学习问题,包括基本的回归问题、二元分类问题和多元分类问题,还包括较为复杂的卷积神经网络对图像的分类和使用预训练CNN 进行的迁移学习;使用递归神经网络进行时间序列预测、自然语言分类,以及通过sequence-to-sequence 模型进行机器翻译;深度强化学习的智能体构建,以及生成对抗网络的图像生成。
阅读更多