韦布、科普西编著的《统计模式识别(第3版)》系统地介绍统计模式识别的理论和技术,并讨论机器学习领域的诸多问题和相关算法,反映模式识别理论和技术的*新研究进展。其中,大部分识别和分类问题取材于工程学、统计学、计算机科学和社会学等领域的相关应用,并配有应用研究实例。与前版相比,充实或新增了关于估计概率密度的贝叶斯方法、估计概率密度的新的非参数方法、新的分类模型、谱聚类问题、分类规则的归纳法、复杂网络等方面的介绍。本书注重基本概念、基本方法的讲述,启发性强,且应用实例丰富,适合作为大学高年级和研究生模式识别课程的教材,也适合作为从事模式识别研究和应用工作的相关技术人员的重要参考用书。韦布、科普西编著的《统计模式识别(第3版)》系统地介绍统计模式识别的理论和技术,并讨论机器学习领域的诸多问题和相关算法,反映模式识别理论和技术的*新研究进展。其中,大部分识别和分类问题取材于工程学、统计学、计算机科学和社会学等领域的相关应用,并配有应用研究实例。与前版相比,充实或新增了关于估计概率密度的贝叶斯方法、估计概率密度的新的非参数方法、新的分类模型、谱聚类问题、分类规则的归纳法、复杂网络等方面的介绍。本书注重基本概念、基本方法的讲述,启发性强,且应用实例丰富,适合作为大学高年级和研究生模式识别课程的教材,也适合作为从事模式识别研究和应用工作的相关技术人员的重要参考用书。
阅读更多