译者序我们正身处一个网络时代。全球的生产贸易网络深刻改变了我们的物质生活,互联网的普及则让我们身处信息洪流之中。当网络成为我们生活的一部分,我们也成为了网络的一部分。面对相互关联的海量网络数据,置身其中的我们如何认识这个世界?在这样的背景下,网络科学近年来迅速崛起,横跨数学、物理学、生物学、计算机、社会学、传播学等领域,成了定量研究中的“显学”。通过将复杂系统抽象为节点、边以及它们的属性,网络科学为解析系统特征、建立系统模型和研究系统的动态过程提供了一套简洁优美的方法。研究者掌握了网络科学的思考方式和分析工具之后,通常可以站在一个更为全局的视角审视问题,让多个交叉学科的研究进展为我所用。尽管市场上已经有不少优秀的网络科学著作,我们相信本书仍会给读者带来惊喜。由于网络科学研究者的学科背景不同,多数网络科学著作往往带有强烈的学科视角特色,例如统计物理背景的著作强调网络整体性质的形成机制,社会学背景的著作强调结构指标和社会学理论框架,而计算机背景的著作则强调数据存储、算法实现等。本书及其前身Statistical Analysis of Network Data 从统计学的视角切入,归纳不同学科网络研究中的通用任务,并采用严格的统计学术语进行了表述,这在同类书籍中尚属少见。本书的6至10 章尤其精彩,其中介绍的网络统计模型很多是近五年的研究进展,对网络研究有兴趣的研究生和科研人员可以借此快速了解研究前沿。我们建议读者深入阅读书中的参考文献,以掌握使用统计工具分析网络数据的思路,并理解数据分析方法所隐含的理论假设。另一方面,本书在讲述统计网络分析时使用了R 语言,主要以igraph和statnet 系列扩展包作为主力分析工具。原书的第二作者正是igraph 扩展包的创建者。相比其他网络分析平台,R 语言自身提供了强大的统计分析功能,所涉及的网络分析扩展包抽象程度更高、封装功能更多,有效节约了研究者构造网络数据结构和算法的时间,使得研究者可以集中精力考虑核心的研究问题。全书采用案例方式讲解统计理论,并提供了相应的分析代码,读者可以仿照书中内容快速上手开始自己的研究。考虑到原书样式和印刷过程,本书在翻译时进行了一些调整,说明如下:• 本书翻译了整行的代码注释,未翻译代码正文中的字符串,并且保留了原书图片中的英文文字,以确保运行代码后产生相同的可视化结果。• 书籍内文采用黑白印刷,对理解内容有影响的彩色图片在书末集中进行彩色印刷。事实上,读者可以运行书中代码自行生成多数彩色图片。• 翻译过程使用R Markdown 写作,并采用了默认的代码格式进行输出,与原书代码格式稍有不同(没有 和+ 等字符,输出结果使用# 标注),但保留了原书代码的行号方便读者索引查阅。本书在翻译时力求准确、生动,但由于译者水平和经验有限,翻译不当之处在所难免。为了更好地为各位读者服务,本书在GitHub 建立了对应的翻译页面 complexly/ sand-translation。若您在阅读过程中发现了任何问题,欢迎在GitHub 提交issue 进行交流,或者发送邮件至book@complexly.me,我们将及时把书籍的勘误信息更新在翻译页面上。最后,本书漫长的翻译出版过程得到了众多好友的帮助,而且绝大部分的交流协作都是在互联网上完成的,本书的诞生正是我们身处网络时代的最好见证。感谢统计之都的魏太云先生为本书介绍翻译出版的渠道,感谢华东理工大学的好友聂春笑、开智社群结识的终身学习者董昊为本书初稿提出的宝贵意见,感谢西安交通大学出版社李颖编辑辛勤细致地审阅校对,没有你们的帮助这本书很难与众位读者见面。同时,也要感谢父母亲友以及石磊老师课题组在翻译过程中的支持,你们的鼓励永远是我继续前进的动力。李杨2016 年5 月于清华园前言网络和网络分析无疑是近年来定量科学进展最大的领域之一。虽然作为领域起源的社会网络分析可以追溯至20 世纪30 年代,图论研究可以上溯几个世纪,但“网络科学”领域的迅速崛起与普及只是近10 到15 年的事情。通过我们熟悉的互联网、社交网络、病毒营销等途径,网络已经渗透到日常生活的方方面面,而不仅仅是一个研究领域或者一种研究方法了。数据的度量与分析是网络研究的重要组成部分。因此,在实际应用、研究方法以及理论发展方面,网络分析都很需要或简或繁的各类统计方法。与其他统计学分支一样,网络分析同时包括描述性和推断性的统计方法。使用这些方法可以完成与网络有关的各种任务,包括基本的网络结构可视化与特征化,对网络拓扑的采样、建模与推断,以及对网络上的静态和动态过程进行建模和预测。当前已经有很多可以进行网络分析的软件,横跨各种平台、编程语言和使用环境。毫无疑问,R 语言社区在网络数据统计分析软件的开发上尤其
阅读更多